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Abstract. A p-divisible group, or more generally an F -crystal, is said to be Hodge-
Newton reducible if its Newton polygon and Hodge polygon have a nontrivial con-
tact point. Katz proved that Hodge-Newton reducible F -crystals admit a canonical
filtration called the Hodge-Newton filtration. The notion of Hodge-Newton reducibil-
ity plays an important role in the deformation theory of p-divisible groups; the key
property is that the Hodge-Newton filtration of a p-divisible group over a field of
characteristic p can be uniquely lifted to a filtration of its deformation.

We generalize Katz’s result to F -crystals that arise from an unramified local Shimura
datum of Hodge type. As an application, we give a generalization of Serre-Tate de-
formation theory for local Shimura data of Hodge type.
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1. Introduction

The motivation of this study is to generalize Serre-Tate deformation theory to p-
divisible groups with additional structures that arise in Shimura varieties of Hodge
type. The classical Serre-Tate deformation theory states that, if X is an ordinary p-
divisible group over a perfect field k of characteristic p > 0, its formal deformation
space has a canonical structure of a formal torus over W (k), the ring of Witt vectors
over k. As a consequence, we get a canonical lifting Xcan over W (k) corresponding to
the identity section of the formal torus. When k is finite, Xcan can be characterized as
the unique deformation of X to which all endomorphisms of X lift. These results first
appeared in the Woods Hole reports of Lubin, Serre and Tate [LST64].

The classical Serre-Tate deformation theory is based on the fact that an ordinary
p-divisible group over k admits a canonical filtration, called the slope filtration, which
can be uniquely lifted to W (k). For general p-divisible groups, this is no longer true;
the slope filtration is given only up to an isogeny, and it does not necessarily lift to
W (k). Still, one can try to study their deformations by finding a canonical filtration
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which can be uniquely lifted to W (k). For example, Messing in [Me72] proved that the
multiplicative-bilocal-étale filtration of a p-divisible group over k can be uniquely lifted
to W (k).

In [Ka79], Katz identified a large class of objects in the category of F -crystals which
admit such a filtration. Recall that an F -crystal M over k has two invariant polygons,
called the Newton polygon and the Hodge polygon, which are convex polygons with the
same endpoints. The points at which the Newton polygon (resp. the Hodge polygon)
changes slope are called its break points. A standard fact known as Mazur’s inequality
states that the Newton polygon lies above the Hodge polygon. We say that M is
Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton
polygon. A specified contact point divides the Newton polygon into two parts ν1 and
ν2 where the slopes of ν1 are less than the slopes of ν2, and similarly the Hodge polygon
into two parts µ1 and µ2. A Hodge-Newton decomposition of M is a decomposition of
the form

M = M1 ⊕M2

such that the Newton (resp. Hodge) polygon of Mi is νi (resp. µi) for i = 1, 2. Such a
decomposition induces a filtration

0 ⊂M1 ⊂M

such that M/M1 = M2; this filtration is referred to as a Hodge-Newton filtration of M .
Katz in [Ka79] proved that every Hodge-Newton reducible F -crystal over k admits a
Hodge-Newton decomposition. For F -crystals that arise from a p-divisible group, the
Hodge-Newton filtration coincides with the multiplicative-bilocal-étale filtration.

In this paper we extend Katz’s result to p-divisible groups and F -crystals that arise
from an unramified local Shimura datum of Hodge type. In addition, we apply this
result to the special case of µ-ordinary p-divisible groups which replace ordinary p-
divisible groups in this setting. In this case, our result yields a unique lifting of the
slope filtration and consequently leads to a generalization of Serre-Tate deformation
theory.

As another application of our result, the author proved Harris-Viehmann conjecture
for l-adic cohomology of Rapoport-Zink spaces of Hodge type under the Hodge-Newton
reducibility assumption in [Hong18].

We remark on previously known results for p-divisible groups and F -crystals of PEL
type. For µ-ordinary p-divisible groups of PEL type, Moonen in [Mo04] proved the
unique lifting of the slope filtration, and used it to generalize Serre-Tate deformation
theory to Shimura varieties of PEL type. Moonen also applied this deformation theory
to study some congruence relations on Shimura varieties of PEL type. Existence of the
Hodge-Newton decomposition for general PEL cases is due to Mantovan and Viehmann
in [MV10]. They also proved the unique lifting of the Hodge-Newton filtration under
some additional assumptions, which were later removed by Shen in [Sh13]. Mantovan
in [Man08] and Shen in [Sh13] used these results to verify Harris-Viehmann conjecture
in this context.

Let us now explain our results in more detail. Assume that k is algebraically closed
of characteristic p. Let W be the ring of Witt vectors over k, and let K0 be its quotient
field. Let σ denote the Frobenius automorphism over k, and also its lift to W and K0.



ON THE HODGE-NEWTON FILTRATION FOR p-DIVISIBLE GROUPS OF HODGE TYPE 3

We will consider an unramified local Shimura datum of Hodge type (G, [b], {µ}), which
consists of an unramified connected reductive group G over Qp, a σ-conjugacy class
[b] of G(K0) and a G(W )-conjugacy class of cocharacters {µ} of GW satisfying certain
conditions (see 2.3 for details). Since G is unramified, we can choose its reductive model
over Zp, which we will also by G. We also fix an embedding G ↪→ GL(Λ) for some finite
free Zp-module Λ. With a suitable choice of b ∈ [b], our Shimura datum gives rise
to an F -crystal M over k with additional structures determined by the choice of an
embedding G ↪→ GL(Λ). When {µ} is minuscule, we also get a p-divisible group X
over k which corresponds to M via Dieudonné theory. We will write M (resp. X) for
M (resp. X) endowed with additional structures. We will give a precise formulation of
these additional structures in 2.3.3.

To the local Shimura datum (G, [b], {µ}) (and also to M and X), we associate two
invariants, called the Newton point and the σ-invariant Hodge point, as defined by Kot-
twitz in [Ko85]. When G = GLn or EL/PEL type, these invariants can be interpreted
as convex polygons with rational slopes; for G = GLn, these polygons agree with the
classical Newton polygon and Hodge polygon. For general group G, however, these in-
variants do not necessarily have an interpretation as polygons. Therefore, the notion of
Hodge-Newton reducibility for general local Shimura data is defined in terms of group
theoretic language, with respect to a specified parabolic subgroup P ( G and its Levi
factor L (see 3.1.1 for the definition).

Our strategy is to study Hodge-Newton reducible local Shimura data using the pre-
viously studied cases G = GLn or EL/PEL type. The main technical challenge is
that the notion of Hodge-Newton reducibility is not functorial. For example, for a
Hodge-Newton reducible unramified local Shimura datum of Hodge type (G, [b], {µ}),
the datum (GL(Λ), [b], {µ}) obtained via the embedding G ↪→ GL(Λ) is not necessarily
Hodge-Newton reducible if G is not split. We overcome this obstacle by proving the
following lemma:

Lemma 1. Given a local Shimura datum (G, [b], {µ}) that is Hodge-Newton reducible
with respect to a parabolic subgroup P ( G and its Levi factor L, there exists a group

G̃ of EL type with the following properties:

(i) the embedding G ↪→ GL(Λ) factors through G̃,

(ii) the datum (G̃, [b], {µ}) is Hodge-Newton reducible with respect to a parabolic

subgroup P̃ ( G̃ and its Levi factor L̃ such that P = P̃ ∩G and L = L̃ ∩G.

For simplicity, we may assume that G̃ = ResO|ZpGLn where O is the ring of integer
for some finite unramified extension E of Qp. When (G, [b], {µ}) is Hodge-Newton
reducible with respect to a parabolic subgroup P ( G and its Levi factor L, we can
choose an element b ∈ [b] ∩ L(K0) and a representative µ ∈ {µ} which factors through

L. The above lemma yields a Levi subgroup L̃ ( G̃, which is of the form

L̃ = ResO|ZpGLn1 × · · · × ResO|ZpGLnr .

For j = 1, 2, · · · , r, we denote by L̃j the j-th factor in the above decomposition, and by

Lj the image of L = L̃∩G under the projection L̃� L̃j. Then the datum (G, [b], {µ})
induces local Shimura data (Lj, [bj], {µj}) via the projections L� Lj.
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Our first main result is existence of the Hodge-Newton decomposition in this setting.
For p-divisible groups with additional structures, the theorem can be stated as follows:

Theorem 2. Assume that (G, [b], {µ}) is Hodge-Newton reducible with respect to a
parabolic subgroup P ( G and its Levi factor L. Let X be a p-divisible group over k
with additional structures corresponding to the choice b ∈ [b] ∩ L(K0). Consider the
local Shimura data (Lj, [bj], {µj}) as explained above. Then X admits a decomposition

X = X1 × · · · ×Xr

where Xj is a p-divisible group over k with additional structures that arises from the
datum (Lj, [bj], {µj}).

We emphasize that this result also applies to F -crystals with additional structures,
as our argument does not require {µ} to be minuscule.

The Hodge-Newton decomposition of X in Theorem 2 induces the Hodge-Newton
filtration of X

0 ⊂ X(r) ⊂ X(r−1) ⊂ · · · ⊂ X(1) = X

whereX(j) = Xj×· · ·×Xr for j = 1, 2, · · · , r. Note that each quotientX(j+1)/X(j) ' Xj

admits additional structures that arise from the datum (Lj, [bj], {µj}). Our second
result is the unique lifting of the Hodge-Newton filtration to deformation rings.

Theorem 3. Retain the notations in Theorem 2. In addition, we assume that p > 2.
Let X be a deformation of X over R = W [[u1, · · · , uN ]] or R = W [[u1, · · · , uN ]]/(pm).
Then X admits a unique filtration

0 ⊂X (r) ⊂X (r−1) ⊂ · · · ⊂X (1) = X

with the following properties:

(i) each X (j) is a deformation of X(j) over R,
(ii) each X (j)/X (j+1) is a deformation of Xj over R, which carries additional struc-

tures that lift the additional structures on Xj.

An important case is when X is µ-ordinary, i.e., the Newton point and the σ-invariant
Hodge point of X coincide. In this case, Theorem 2 gives us a “slope decomposition”

X = X1 ×X2 × · · · ×Xr.

Then Theorem 3 implies that the induced “slope filtration” can be uniquely lifted to
a filtration of a deformation of X. As a result, we find a generalization of Serre-Tate
deformation theory. When r = 2, the theorem can be stated as follows:

Theorem 4. Assume that X is µ-ordinary with two factors in its slope decomposition.
If p > 2, the formal deformation space DefX,G of X has a natural structure of a p-
divisible group over W . More precisely, there exist two positive integers h and d (which
can be explicitly computed) such that

DefX,G
∼= Ỹ d

h

as p-divisible groups over W , where Ỹh is the Lubin-Tate formal group of height h.
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We remark that A. Vasiu in [Va13] has a similar generalization of Serre-Tate defor-
mation theory in a different language. For example, Proposition 9.1.2 and Theorem 9.4
of [Va13] respectively correspond to the special case of Theorem 3 (Proposition 4.1.3)
and Theorem 4. Our generalization is an improvement of the generalization by Vasiu
for the following reasons:

(1) Our deformation theory does not rely on any geometric construction; therefore,
it applies to any p-divisible groups that may not arise from Shimura varieties.

(2) Our deformation theory gives an explicit description of the formal group struc-
ture in the deformation space, with simple and natural proofs for the key facts
listed above.

After this paper was submitted, Shankar and Zhou in [SZ16] also independently
obtained a similar generalization of Serre-Tate deformation theory using a different
method.

We now give a brief description of the structure of this paper. In section 2, we
recall some basic definitions, such as F -isocrystals with G-structure and unramified
local Shimura data of Hodge type, and review Faltings’s explicit construction of the
“universal deformation” of p-divisible groups with additional structures. In section
3, we define and study the notion of Hodge-Newton reducibility for unramified local
Shimura data of Hodge type (Theorem 2 and Theorem 3). In section 4, we establish a
generalization of Serre-Tate deformation theory for local Shimura data of Hodge type
(e.g. Theorem 4).

Acknowledgments. I would like to sincerely thank my advisor E. Mantovan for her
continuous encouragement and advice. I also thank T. Wedhorn for his helpful com-
ments on a preliminary version of this paper. Finally, I sincerely thank the anonymous
referee for their suggestions which greatly helped in improving and clarifying the man-
uscript.

2. Preliminaries

2.1. Group theoretic notations.

2.1.1. Throughout this paper, k is a perfect field of positive characteristic p. We write
W (k) for the ring of Witt vectors over k, and K0(k) for its quotient field. We will
often write W = W (k) and K0 = K0(k). We generally denote by σ the Frobenius
automorphism over k, and also its lift to W (k) and K0(k).

Let Λ be a finitely generated free module over Zp. Then σ acts on ΛW = Λ ⊗Zp W
and on GL(ΛW ) = GL(Λ)⊗Zp W via 1⊗ σ. Alternatively, we may write this action as
σ(g) = (1⊗ σ) ◦ g ◦ (1⊗ σ−1) for g ∈ GL(ΛW ). We also have an induced action of σ on
the group of cocharacters HomW (Gm,GL(ΛW )) defined by σ(µ)(a) = σ(µ(a)).

For two Zp-algebras R ⊆ R′, we will denote by ResR′|RGLn the Weil restriction of
GLn ⊗R R′. If O is a finite unramified extension of Zp, a choice of σ-invariant basis of
O over Zp determines an embedding of affine Zp-groups

ResO|ZpGLn ↪→ GLmn,
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where m = |O : Zp|. If Λ is a free module over O of rank n, then there is a natural
identification ResO|ZpGL(Λ)⊗ZpW

∼= GLO⊗ZpW
(ΛW ) where the latter is identified with

a product of m copies of GLn ⊗Zp W after choosing a σ-invariant basis of O over Zp.

2.1.2. Let G be a connected reductive group over Qp with a Borel subgroup B ⊆ G
and a maximal torus T ⊆ B. We will write (X∗(T ),Φ, X∗(T ),Φ∨) for the associated
root datum, and Ω for the associated Weyl group. The choice of B determines a
set of positive roots Φ+ ⊆ Φ and a set of positive coroots Φ∨+ ⊆ Φ∨. The group Ω
naturally acts on X∗(T ) (resp. X∗(T )), and the dominant cocharacters (resp. dominant
characters) form a full set of representatives for the orbits in X∗(T )/Ω (resp. X∗(T )/Ω).

Except for 2.2, we will always assume that G is unramified. This means that G
satisfies the following equivalent conditions:

(i) G is quasi-split and split over a finite unramified extension of Qp.
(ii) G admits a reductive model over Zp.

When G is unramified, we fix a reductive model GZp over Zp, and will often write
G = GZp if there is no risk of confusion. We also fix a Borel subgroup B ⊆ G and a
maximal torus T ⊆ B which are both defined over Zp.

For any local, strictly Henselian Zp-algebra R and a cocharacter µ : Gm,R → GR,
we denote by {µ} the G(R)-conjugacy class of µ. We have identifications X∗(T ) ∼=
HomR(Gm, TR) and Ω ∼= NG(T )(R)/T (R), which induce a bijection between X∗(T )/Ω
and the set of G(R)-conjugacy classes of cocharacters for GR. We will be mostly
interested in the case R = W (k) for some algebraically closed k, where we also have a
bijection

HomW (Gm, GW )/G(W ) ∼= HomK0(Gm, GK0)/G(K0)
∼→ G(W )\G(K0)/G(W )

induced by {µ} 7→ G(W )µ(p)G(W ); indeed, the first bijection follows from the fact
that G is split over W , while the second bijection is the Cartan decomposition.

2.2. F -isocrystals with G-structure.

We review the theory of F -isocrystals with G-structure due to R. Kottwitz in [Ko85]
and [Ko97]. We do not assume that G is unramified for this subsection.

2.2.1. Let k be a perfect field of positive characteristic p. An F -isocrystal over k is a
vector space V over K0(k) with an isomorphism F : σ∗V

∼→ V . The dimension of V is
called the height of the isocrystal. Let F -Isoc(k) denote the category of F -isocrystals
over k. For a connected reductive group G over Qp, we define an F -isocrystal over k
with G-structure as an exact faithful tensor functor

RepQp(G)→ F -Isoc(k).

Example 2.2.2. (i) An F -isocrystal with GLn-structure is an F -isocrystal of height n.

(ii) If G = ResE|QpGLn where E|Qp is a finite extension of degree m, an F -isocrystal
with G-structure is an F -isocrystal V of height mn together with a Qp-homomorphism
ι : E → Endk(V ).
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(iii) If G = GSp2n, an F -isocrystal with G-structure is an F -isocrystal V of height
2n together with a non-degenerate alternating pairing V ⊗ V → 1, where 1 is the unit
object of the tensor category F -Isoc(k).

2.2.3. Let us now assume that k is algebraically closed. We say that b, b′ ∈ G(K0) are
σ-conjugate if there exists g ∈ G(K0) such that b′ = gbσ(g)−1. We denote by B(G)
the set of all σ-conjugacy classes in G(K0). The definition of B(G) is independent
of k in the sense that any inclusion k ↪→ k′ into another algebraically closed field of
characteristic p induces a bijection between the σ-conjugacy classes of G(K0(k)) and
those of G(K0(k′)). We will write [b]G, or simply [b] when there is no risk of confusion,
for the σ-conjugacy class of b ∈ G(K0).

The set B(G) classifies the F -isocrystals over k with G-structure up to isomorphism.
We describe this classification as explained in [RR96], 3.4. Given b ∈ G(K0) and a G-
representation (V, ρ) over Qp, set Nb(ρ) to be V ⊗Qp K0 with a σ-linear automorphism
F = ρ(b)◦ (1⊗σ). Then Nb : RepQp(G)→ F -Isoc(k) is an exact faithful tensor functor.
It is evident that two elements b1, b2 ∈ G(K0) give an isomorphic functor if and only if
they are σ-conjugate. One can also prove that any F -isocrystal on k with G-structure is
isomorphic to a functor Nb for some b ∈ G(K0). Hence the association b 7→ Nb induces
the desired classification.

2.2.4. Let D be the pro-algebraic torus over Qp with character group Q. We introduce
the set

N (G) := (Int G(K0)\HomK0(D, GK0))
〈σ〉.

If we fix a Borel subgroup B ⊆ G and a maximal torus T ⊆ B, we can also write

N (G) = (X∗(T )Q/Ω)〈σ〉.

We can define a partial order � on N (G) as follows. Let C̄ be the closed Weyl
chamber. First we define a partial order �1 on X∗(T )R by declaring that α �1 α

′ if
and only if α′ − α is a nonnegative linear combination of positive coroots. Each orbit
in X∗(T )R/Ω is represented by a unique element in C̄, so the restriction of �1 to C̄
induces a partial order �2 on X∗(T )R/Ω. Then we take � to be the restriction of �2

to (X∗(T )Q/Ω)〈σ〉.

Remark. A closed embedding G1 ↪→ G2 of connected reductive algebraic groups over
Qp induces an order-preserving mapN (G1)→ N (G2), which is not necessarily injective.

2.2.5. Kottwitz studied the set B(G) by introducing two maps

νG : B(G)→ N (G), κG : B(G)→ π1(G)〈σ〉

called the Newton map and the Kottwitz map of G. We refer the readers to [Ko85], §4
or [RR96], §1 for definition of the Newton map, and [Ko97], §4 and §7 for definition of
the Kottwitz map. Both maps are functorial in G; more precisely, they induce natural
transformations of set-valued functors on the category of connected reductive groups

ν : B(·)→ N (·), κ : B(·)→ π1(·)〈σ〉.

Given [b] ∈ B(G) (and its corresponding F -isocrystal with G-structure), we will
often refer to two invariants νG([b]) and κG([b]) respectively as the Newton point and
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the Kottwitz point of [b]. Kottwitz proved that a σ-conjugacy class is determined by its
Newton point and Kottwitz point; in other words, the map

νG × κG : B(G)→ N (G)× π1(G)〈σ〉

is injective ([Ko97], 4.13).

Example 2.2.6. We describe the Newton map for G = GLn. Let T be the diagonal
torus contained in the Borel subgroup of lower triangular matrices. Then using the
identification X∗(T ) ∼= Zn we can write

N (GLn) = {(r1, r2, · · · , rn) ∈ Qn : r1 ≤ r2 ≤ · · · ≤ rn},

which can be identified with the set of convex polygons with rational slopes. We have

(ri) � (si) if and only if
l∑

i=1

(ri − si) ≥ 0 for all l ∈ {1, 2, · · · , n}, so the ordering �

coincides with the usual “lying above” order for convex polygons.

If V is an F -isocrystal V of height n associated to [b] ∈ B(GLn), its Newton point
νGLn([b]) is the same as its classical Newton polygon. In this case, the Kottwitz point
κGLn([b]) is determined by the Newton point νGLn([b]). Hence V and [b] are determined
by the Newton point νGLn([b]), and we recover Manin’s classification of F -isocrystals
by their Newton polygons in [Ma63].

2.2.7. Let µ ∈ X∗(T ) be a dominant cocharacter. Then µ represents a unique conjugacy
class of cocharacters of G(K0) which we denote by {µ}. We identify µ with its image
in X∗(T )/Ω, and define

µ̄ =
1

m

m−1∑
i=0

σi(µ) ∈ N (G)

where m is some integer such that σm(µ) = µ. Note that our definition of µ̄ does not
depend on the choice of m. We also let µ\ ∈ π1(G)〈σ〉 be the image of µ under the natural
projection X∗(T ) → π1(G)〈σ〉 = (X∗(T )/〈α∨ : α∨ ∈ Φ∨〉)〈σ〉. The characterization of
the Newton map in [Ko85], 4.3 shows that µ̄ is the image of [µ(p)] under νG. It also
follows directly from the definition of κG that µ\ is the image of [µ(p)] under κG.

Let us now define the set

B(G, {µ}) := {[b] ∈ B(G) : κG([b]) = µ\, νG([b]) � µ̄}.

This set is known to be finite (see [RR96], 2.4.). It is also non-empty since we have
[µ(p)] ∈ B(G, {µ}) by the discussion in the previous paragraph.

Since the Newton map is injective on B(G, {µ}) (see 2.2.5), the partial order � on
N (G) induces a partial order on B(G, {µ}). We will also use the symbol � to denote
this induced partial order. Note that [µ(p)] is a unique maximal element in B(G, {µ})
as the inequality [b] � [µ(p)] clearly holds for all [b] ∈ B(G, {µ}).

We refer to the σ-conjugacy class [µ(p)] as the µ-ordinary element of B(G, {µ}). We
say that an F -isocrystal over k with G-structure is µ-ordinary if it corresponds to [µ(p)]
in the sense of 2.2.3. Note that a σ-conjugacy class [b] ∈ B(G, {µ}) is µ-ordinary if and
only if νG([b]) = µ̄.



ON THE HODGE-NEWTON FILTRATION FOR p-DIVISIBLE GROUPS OF HODGE TYPE 9

2.3. Unramified local Shimura data of Hodge type.

In this subsection, we review the notion of unramified local Shimura data of Hodge
type and describe F -crystals with additional structures that arise from such data.

2.3.1. Assume that k is algebraically closed. By an unramified (integral) local Shimura
datum of Hodge type, we mean a tuple (G, [b], {µ}) where

• G is an unramified connected reductive group over Qp;
• [b] is a σ-conjugacy class of G(K0);
• {µ} is a G(W )-conjugacy class of cocharacters of G,

which satisfy the following two conditions:

(i) [b] ∈ B(G, {µ}),
(ii) there exists a faithful G-representation Λ ∈ RepZp(G) (with its dual Λ∗) such

that, for all b ∈ [b] and µ ∈ {µ} satisfying b ∈ G(W )µ(p)G(W ), the W -lattice

M := Λ∗ ⊗Zp W ⊂ Nb(Λ
∗ ⊗Zp Qp)

satisfies the property pM ⊂ FM ⊂ M (where F is defined from b as explained
in 2.2.3).

Here Nb : RepQp(G) → F -Isoc(k) is the functor defined in 2.2.3 which is uniquely
determined by [b]. The set G(W )µ(p)G(W ) is independent of the choice µ ∈ {µ} as
explained in 2.1.2. The property pM ⊂ FM ⊂M means that M is an F -crystal over k
(with a σ-linear endomorphism F ). The requirement b ∈ G(W )µ(p)G(W ) ensures that
the Hodge filtration of M is induced by σ−1(µ).

In practice when one tries to check that a given tuple (G, [b], {µ}) is an unramified
local Shimura datum, it is often more convenient to work with the following equivalent
conditions of (i) and (ii):

(i’) [b] ∩G(W )µ(p)G(W ) is not empty for some (and hence for all) µ ∈ {µ},
(ii’) there exists a faithful G-representation Λ ∈ RepZp(G) (with its dual Λ∗) such

that, for some b ∈ [b] and µ ∈ {µ} satisfying b ∈ G(W )µ(p)G(W ), the W -lattice

M := Λ∗ ⊗Zp W ⊂ Nb(Λ
∗ ⊗Zp Qp)

satisfies the property pM ⊂ FM ⊂M .

The equivalence of (i) and (i’) is due to work of several authors, including Kottwitz-
Rapoport [KR03], Lucarelli [Lu04] and Gashi [Ga10]. Note that (i’) ensures that the
condition (ii) is never vacuously satisfied. The equivalence of (ii) and (ii’), one observes
that both conditions are equivalent to the condition that the linearization of F has an
integer matrix representation after taking some σ-conjugate, which depends only on [b].

Remark. When {µ} is minuscule, an unramified local Shimura datum of Hodge type
as defined above is a local Shimura datum as defined by Rapoport and Viehmann in
[RV14], Definition 5.1. In fact, sinceG is split overW , we may view geometric conjugacy
classes of cocharacters as G(W )-conjugacy classes of cocharacters.

Using the conditions (i’) and (ii’) one easily verifies the following functorial properties
of unramified local Shimura data of Hodge type:

Lemma 2.3.2. Let (G, [b], {µ}) be an unramified local Shimura datum of Hodge type.
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(1) If (G′, [b′], {µ′}) is another unramified local Shimura datum of Hodge type, the
tuple (G×G′, [b, b′], {µ, µ′}) is also an unramified local Shimura datum of Hodge
type.

(2) For any homomorphism f : G −→ G′ of unramified connected reductive group
defined over Zp, the tuple (G′, [f(b)], {f ◦ µ}) is an unramified local Shimura
datum of Hodge type.

2.3.3. For the rest of this section, we fix our unramified local Shimura datum of Hodge
type (G, [b], {µ}) and also a faithful G-representation Λ ∈ RepZp(G) in the condition
(ii) of 2.3.1. By Lemma 2.3.2, we obtain a morphism of unramified local Shimura data
of Hodge type

(G, [b], {µ}) −→ (GL(Λ), [b]GL(Λ), {µ}GL(Λ)).

For a Zp-algebra R, we let Λ⊗R denote the direct sum of all the R-modules which can
be formed from ΛR := Λ ⊗Zp R using the operations of taking duals, tensor products,
symmetric powers and exterior powers. An element of Λ⊗R is called a tensor on ΛR.
For the dual R-module Λ∗R of ΛR, we can similarly define (Λ∗R)⊗ which has a natural
identification (Λ∗R)⊗ = Λ⊗R. An automorphism f of ΛR induces an automorphism (f−1)∗

of Λ∗R and thus an automorphism f⊗ of Λ⊗R.

Let us now choose an element b ∈ [b] ∩ G(W )µ(p)G(W ) and take M := Λ∗ ⊗Zp W
as in the condition (ii) of 2.3.1. A standard result by Kisin in [Ki10], Proposition 1.3.2
gives a finite family of tensors (si)i∈I on Λ such that G is the pointwise stabilizer of the
si; i.e., for any Zp-algebra R we have

G(R) = {g ∈ GL(ΛR) : g⊗((si)R) = (si)R for all i ∈ I}.
Hence M = Λ∗ ⊗Zp W is equipped with tensors (ti) := (si ⊗ 1), which are F -invariant
since the linearization of F on M [1/p] = Nb(Λ

∗⊗ZpQp) is given by an element b ∈ G(K0)
in the conjugacy class [b]. We may regard the tensors (ti) as additional structures on
M induced by the group G. Following the terminology of 2.2, we will often refer to
these additional structures as G-structure. We will also write M := (M, (ti)), which
will often be referred to as an F -crystal with G-structure (induced by b).

For a p-divisible group X ′ over a Zp-scheme S, we will write D(X ′) for its (contravari-
ant) Dieudonné module. When {µ} is minuscule, we have a unique p-divisible group
X over k with D(X) = M . In this case, we will often write X := (X, (ti)) and refer
to it as a p-divisible group with G-structure (induced by b). We will sometimes use the
phrase “tensors on X” to indicate the tensors (ti), although strictly speaking they are
tensors on the Dieudonne module D(X) = M .

2.3.4. For the datum (G, [b], {µ}), we can define its Newton point and Kottwitz point
by νG([b]) and κG([b]). Taking a unique dominant representative µ of {µ}, we can also
define µ̄ as in 2.2.7, which we call the σ-invariant Hodge point of (G, [b], {µ}). We say
that (G, [b], {µ}) is µ-ordinary if [b] is µ-ordinary.

For the F -crystal with G-structure M , we define its Newton point, Kottwitz point
and σ-invariant Hodge point to be the corresponding invariants for (G, [b], {µ}). We say
that M is ordinary if (G, [b], {µ}) is ordinary. When {µ} is minuscule, these definitions
obviously extend to the corresponding p-divisible group with G-structure X.
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Remark. We can further extend most of the notions defined in this section to the case
when k is not algebraically closed. For example, we may define an F -crystal over k
with G-structure as an F -crystal M over k equipped with tensors (ti) such that the pair
(M⊗W (k)W (k̄), (ti⊗1)) is an F -crystal over k̄ with G-structure as defined in 2.3.3. Then
we have natural notions of the Newton point, Kottwitz point, σ-invariant Hodge point
and µ-ordinariness induced by the corresponding notions for (M ⊗W (k) W (k̄), (ti ⊗ 1)).
This explains why we may safely focus our study on the case when k is algebraically
closed.

Example 2.3.5. As a concrete example, let us consider the case G = ResO|ZpGLn
where O is the ring of integers of some finite unramified extension E of Qp.

Choosing a family of tensors (si) on Λ whose pointwise stabilizer is G amounts to
choosing a Zp-basis of O. Hence M = (M, (ti)) can be identified with an F -crystal M
with an action of O (cf. Example 2.2.2.(ii)). Following Moonen in [Mo04], we will often
say O-module structure in lieu of G-structure.

We now take I := Hom(O,W (k)) and m := |E : Qp|. Note that I has m elements.
For convenience, we will write i+ s := σs ◦ i for any i ∈ I and s ∈ Z. Then M , being
a module over O ⊗Zp W (k) =

∏
i∈I W (k), decomposes into character spaces

(2.3.5.1) M =
⊕
i∈I

Mi where Mi = {x ∈M : a · x = i(a)x}.

For each i ∈ I , the Frobenius map F restricts to a σ-linear map Fi : Mi → Mi+1.
Then the map Fm restricts to a σm-linear endomorphism φi of Mi, thereby yielding a
σm-F -crystal (Mi, φi) over k. By construction, Fi induces an isogeny from σ∗(Mi, φi)
to (Mi+1, φi+1). This implies that the rank and the Newton polygon of (Mi, φi) is
independent of i ∈ I . We will write d for the rank of (Mi, φi).

The decomposition (2.3.5.1) yields a decomposition

M/FM =
⊕
i∈I

Mi/Fi−1Mi.

Define a function f : I → Z by setting f(i) to be the rank of Mi/Fi−1Mi. We refer to
the datum (d, f) as the type of M .

Let us describe the Newton point in this setting. Using the identifications GW
∼=∏

i∈I GL(Mi) and X∗(T ) ∼= Zmd we can write

X∗(T )Q/Ω = {(x1, · · · , xmd) ∈ Qmd : xds+1 ≤ · · · ≤ xd(s+1) for s = 0, 1, · · · ,m− 1}.
For µ = (x1, · · · , xmd) ∈ X∗(T )Q/Ω the action of σ is given by σ(µ) = (y1, · · · , ymd)
where yt = xt+d. Therefore we obtain an identification

(2.3.5.2) N (G) = {(r1, r2, · · · , rd) ∈ Qd : r1 ≤ r2 ≤ · · · ≤ rd}.
Under this identification, the Newton point νG([b]) of M coincides with the Newton
polygon of (Mi, φi) which was already seen to be independent of i ∈ I . We will refer
to this polygon as the Newton polygon of M . The polygon νG([b]) is closely related with
the Newton polygon of M (without O-module structure) as follows: a rational number
λ appears with multiplicity α in νG([b]) (viewed as a d-tuple) if and only if it appears
with multiplicity mα in the Newton polygon of M (viewed as an md-tuple).
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We can also regard the σ-invariant Hodge point µ̄ as a polygon under the identification
(2.3.5.2). We will refer to this polygon as the σ-invariant Hodge polygon of M . The
inequality νG([b]) � µ̄ serves as a generalized Mazur’s inequality, which says that the
Newton polygon νG([b]) lies above the σ-invariant Hodge polygon µ̄. Note that M is
µ-ordinary if and only if the two polygons coincide.

When {µ} is minuscule, we also identify X = (X, (ti)) with a p-divisible group X
with an action of O. All of the discussions above evidently apply to X. Namely, we
can define the type, the Newton polygon and the σ-invariant Hodge polygon of X. In
addition, when {µ} is minuscule we have the following facts:

(1) The σ-invariant Hodge polygon µ̄ of X is determined by the type (d, f) as follows:
if we write µ̄ = (a1, a2, · · · , ad), the slopes aj are given by

aj = #{i ∈ I : f(i) > d− j}
(see [Mo04], 1.2.5.).

(2) There exists a unique isomorphism class of µ-ordinary p-divisible groups with
O-module structure of a fixed type (d, f) (see [Mo04], Theorem 1.3.7.).

Remark. As seen in 2.1.1, we have an embedding GW = ResO|ZpGLn⊗ZpW ↪→ GL(M)
where the image is identified with a product of m copies of GLn ⊗Zp W . The decom-
position (2.3.5.1) shows that these copies are given by GL(Mi). In particular, we have
n = d.

2.3.6. The isomorphism class of M = (M, (ti)) depends on the choice b ∈ [b], even
though M [1/p] ' Nb(Λ

∗ ⊗Zp Qp) is independent of this choice. To see this, let M ′ =
(M ′, (t′i)) be the F -crystal over k with G-structure that arises from another choice
b′ = gbσ(g)−1 ∈ [b]∩G(W )µ(p)G(W ) for some g ∈ G(K0). Then g gives an isomorphism

M [1/p] ' Nb(Λ
∗ ⊗Zp Qp)

∼−→ Nb′(Λ
∗ ⊗Zp Qp) 'M ′[1/p],

which also matches (ti) with (t′i) since g ∈ G(K0). However, this isomorphism does not
induce an isomorphism between M and M ′ unless g ∈ G(W ).

The above discussion motivates us to consider the set

XG
{µ}([b]) := {g ∈ G(K0)/G(W )|gbσ(g)−1 ∈ G(W )µ(p)G(W )}.

This set is clearly independent of our choice of b ∈ [b] up to bijection. It is also
independent of the choice of µ ∈ {µ} as we already noted that the set G(W )µ(p)G(W )
only depends on the conjugacy class of µ. The set XG

{µ}([b]) is called the affine Deligne-

Lusztig set associated to (G, [b], {µ}).

Proposition 2.3.7. Fix an element b ∈ [b], and let M = (M, (ti)) denote the F -crystal
with G-structure induced by b (as defined in 2.3.3). Then the affine Deligne-Lusztig set
XG
{µ}([b]) classifies isomorphism classes of tuples (M ′, (t′i), ι) where

• (M ′, (t′i)) is an F -crystal over k with G-structure;

• ι : M ′[1/p]
∼−→M [1/p] is an isomorphism which matches (t′i) with (ti).

When {µ} is minuscule, take X to be the p-divisible group with D(X) = M . Then the
set XG

{µ}([b]) also classifies isomorphism classes of tuples (X ′, (t′i), ι) where

• (X ′, (t′i)) is a p-divisible group over k with G-structure;
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• ι : X → X ′ is a quasi-isogeny such that the induced isomorphism D(X ′)[1/p]
∼−→

D(X)[1/p] matches (t′i) with (ti).

Proof. The second part follows immediately from the first part using Dieudonné theory,
so we need only prove the first part.

Let g be a representative of gG(W ) ∈ XG
{µ}([b]). Then as discussed in 2.3.6, the

element b′ := g−1bσ(g) gives rise to an F -crystal over k with G-structure (M ′, (t′i)) and

an isomorphism ι : M ′[1/p]
∼−→M [1/p] which matches (t′i) with (ti). It is clear that the

isomorphism class of (M ′, (t′i), ι) does not depend on the choice of the representative g.

Conversely, let (M ′, (t′i), ι) be a tuple as in the statement. Let b′ ∈ G(K0) be the

linearization of the Frobenius map on M ′[1/p]. Then the isomorphism ι : M ′[1/p]
∼−→

M [1/p] determines an element g ∈ G(K0) such that b′ = gbσ(g)−1. Moreover, we have
b′ ∈ G(W )µ(p)G(W ) since (M ′, (t′i)) is an F -crystal over k with G-structure. Changing
(M ′, (t′i), ι) to an isomorphic tuple will change g to gh for some h ∈ G(W ), so we get a
well-defined element gG(W ) ∈ XG

{µ}([b]).

These associations are clearly inverse to each other, so we complete the proof. �

We now describe some functorial properties of affine Deligne-Lusztig sets which are
compatible with the functorial properties of unramified local Shimura data of Hodge
type described in Lemma 2.3.2.

Lemma 2.3.8. Let G′ be an unramified connected reductive group over Qp.

(1) If (G′, [b′], {µ′}) is an unramified local Shimura datum of Hodge type, we have
an isomorphism

XG×G′
{µ,µ′}([b, b

′])
∼−→ XG

{µ}([b])×XG′

{µ′}([b
′])

induced by the natural projections.
(2) For any homomorphism f : G −→ G′ defined over Zp, we have a natural map

XG
{µ}([b]) −→ XG′

{f◦µ}([f(b)])

induced by gG(W ) 7→ f(g)G′(W ), which is injective if f is a closed immersion.

Proof. The only possibly non-trivial assertion is the injectivity of the natural map
XG
{µ}([b]) −→ XG′

{f◦µ}([f(b)]) in (2) when f is a closed immersion. To see this, one may

assume that G′ = GLn by embedding G′ into some GLn. Then the assertion follows
from the fact that the map

G(K0)/G(W ) −→ GLn(K0)/GLn(W )

is injective (see [HP17], 2.4.4.). �

2.4. Deformation Spaces of p-divisible groups with Tate tensors.

In this subsection, we review Faltings’s construction of a “universal” deformation of
p-divisible groups with Tate tensors, given in [Fal99], §7. We refer readers to [Mo98],
§4 for a more detailed discussion of these results.
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2.4.1. Let R be a ring of the form R = W [[u1, · · · , uN ]] or R = W [[u1, · · · , uN ]]/(pm).
We can define a lift of the Frobenius map on R, which we also denote by σ, by setting
σ(ui) = upi .

We define a filtered crystalline Dieudonné module overR to be a 4-tuple (M ,Fil1(M ),∇, F )
where

• M is a free R-module of finite rank;
• Fil1(M ) ⊂M is a direct summand;

• ∇ : M →M ⊗ Ω̂R/W is an integrable, topologically quasi-nilpotent connection;
• FM : M →M is a σ-linear horizontal endomorphism,

which satisfy the following conditions:

(i) FM induces an isomorphism
(
M + p−1Fil1(M )

)
⊗R,σ R

∼−→M , and

(ii) Fil1(M )⊗R (R/p) = Ker
(
F ⊗ σR/p : M ⊗R (R/p)→M ⊗R (R/p)

)
.

Combining the work of de Jong in [dJ95] and Grothendieck-Messing theory, we obtain
an equivalence between the category of filtered crystalline Dieudonné modules over R
and the (opposite) category of p-divisible groups over R (see also [Mo98], 4.1.).

2.4.2. Let X be a p-divisible group over k. We write CW for the category of artinian
local W -algebras with residue field k. By a deformation or lifting of X over R ∈ CW ,
we mean a p-divisible group X over R with an isomorphism α : X ⊗R k ∼= X. We
define a functor DefX : CW → Sets by setting DefX(R) to be the set of isomorphism
classes of deformations of X over R.

We take M := D(X), the contravariant Dieudonné module of X, and write F for
the Frobenius map and Fil1(M) ⊂M for its Hodge filtration. We choose a cocharacter
µ : Gm → GLW (M) such that σ−1(µ) induces this filtration; for instance, we take µ to
be the dominant cocharacter that represents the Hodge polygon of X under the identi-
fication of the Newton set N (GLn) in Example 2.2.6. The stabilizer of the complement
of Fil1(M) is a parabolic subgroup of GLW (M). We let Uµ be its unipotent radical,

and take the formal completion Ûµ = SpfRµ
GL of Uµ at the identity section. Then Rµ

GL

is a formal power series ring over W , so we can define a lift of Frobenius map on Rµ
GL.

Proposition 2.4.3 ([Fal99], §7). Let ut ∈ Ûµ(Rµ
GL) be the tautological point. Define

M := M ⊗W Rµ
GL, Fil1(M ) := Fil1(M)⊗W Rµ

GL, FM := ut ◦ (F ⊗W σ).

(1) There exists a unique topologically quasi-nilpotent connection ∇ : M → M ⊗
Ω̂RµGL/W

that commutes with FM , and this connection is integrable.

(2) If p > 2, the filtered crystalline Dieudonné module (M ,Fil1(M ),∇, FM ) corre-
sponds to the universal deformation of X via the equivalence described in 2.4.1.

In particular, (2) implies that we have an identification DefX ∼= SpfRµ
GL. We will

write X µ
GL for the universal deformation of X.
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2.4.4. We now consider deformations of p-divisible groups with G-structure. We fix
an unramified local Shimura datum of Hodge type (G, [b], {µ}) with minuscule {µ}.
We also fix a faithful G-representation Λ ∈ RepZp(G) in the condition (ii) of 2.3.1,
and choose b ∈ [b] and µ ∈ {µ} such that b ∈ G(W )µ(p)G(W ). Then we obtain an
F -crystal with G-structure M = (M, (ti)) as explained in 2.3.3, which gives rise to a
p-divisible group with G-structure X = (X, (ti)) since {µ} is minuscule. The condition
b ∈ G(W )µ(p)G(W ) ensures that the Hodge filtration Fil1(M) ⊂ M is induced by
σ−1(µ), so all the constructions from 2.4.2 and Proposition 2.4.3 are valid for X.

Let Uµ
G := Uµ∩GW , which is a smooth unipotent subgroup of GW . Take Ûµ

G = SpfRµ
G

to be its formal completion at the identity section. Then Rµ
G is a formal power series

ring over W , so we get a lift of Frobenius map to Rµ
G. Alternatively, we get this lift from

the lift on Rµ
GL via the surjection Rµ

GL � Rµ
G induced by the embedding Ûµ

G ↪−→ Ûµ.

Let ut,G ∈ Ûµ
G(Rµ

G) be the tautological point. Define

MG := M ⊗W Rµ
G, Fil1(MG) := Fil1(M)⊗W Rµ

G, FMG
:= ut,G ◦ (F ⊗W σ).

Then we have an integrable, topologically quasi-nilpotent connection ∇G : MG →
MG ⊗ Ω̂RµG/W

induced by ∇ : M →M ⊗ Ω̂RµGL/W
from Proposition 2.4.3. In addition,

∇G clearly commutes with FMG
by construction. Hence we have a filtered crystalline

Dieudonné module (MG,Fil1(MG),∇G, FMG
).

Note that MG is equipped with tensors (tuniv
i ) := (ti ⊗ 1), which are evidently FMG

-
invariant by construction. If p > 2, one can prove that these tensors lie in the 0th
filtration (see [Kim13], Lemma 2.2.7 and Proposition 2.5.9.).

Let X µ
G be the p-divisible group over Rµ

G corresponding to (MG,Fil1(MG),∇G, FMG
)

via the equivalence described in 2.4.1. Alternatively, one can get X µ
G by simply pulling

back X µ
GL over Rµ

G. Then X µ
G is the “universal deformation” of (X, (ti)) in the following

sense:

Proposition 2.4.5 ([Fal99], §7). Assume that p > 2. Let R be a ring of the form
R = W [[u1, · · · , uN ]] or R = W [[u1, · · · , uN ]]/(pm). Choose a deformation X of X over
R, and let f : Rµ

GL → R be the morphism induced by X via SpfRµ
GL
∼= DefX . Then f

factors through Rµ
G if and only if the tensors (ti) can be lifted to tensors (ti) ∈ D(X )⊗

which are Frobenius-invariant and lie in the 0th filtration with respect to the Hodge
filtration. If this holds, then we necessarily have (f ∗tunivi ) = (ti).

We define DefX,G to be the image of the closed immersion SpfRµ
G ↪−→ SpfRµ

GL
∼= DefX .

Then DefX,G classifies deformations of (X, (ti)) over formal power series rings over W
or W/(pm) in the sense of Proposition 2.4.5. Note that our definition of DefX,G is
independent of the choice of (ti) and µ ∈ {µ}; indeed, the independence of the choice
of (ti) is clear by construction, and the independence of the choice of µ follows from
the universal property.

We close this section with some functorial properties of deformation spaces, which
are compatible with the functorial properties of unramified local Shimura data of Hodge
type described in Lemma 2.3.2. The proof is straightforward and thus omitted.
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Lemma 2.4.6. Let (G′, [b′], {µ′}) be another unramified local Shimura datum of Hodge
type. Choose b′ ∈ [b′] and µ′ ∈ {µ′} such that b′ ∈ G′(W )µ′(p)G′(W ), and let (X ′, (t′i))
be a p-divisible group with G′-structure that arises from this choice.

(1) The natural morphism DefX×DefX′ −→ DefX×X′, defined by taking the product
of deformations, induces an isomorphism

DefX,G × DefX′,G′
∼−→ DefX×X′,G×G′ .

(2) For any homomorphism f : G → G′ defined over Zp such that f(b) = b′, we
have a natural morphism

DefX,G → DefX′,G′

induced by the map Ûµ
G → Û f◦µ

G′ .

Remark. With some additional work, one can show that the natural morphism DefX,G →
DefX′,G′ in (2) is independent of the choice of µ ∈ {µ}. See [Kim13], Proposition 3.7.2
for details.

3. Hodge-Newton reducible local Shimura data of Hodge type

In this section, we state and prove our main results on the Hodge-Newton decompo-
sition and the Hodge-Newton filtration in the setting of unramified local Shimura data
of Hodge type.

3.1. EL realization of Hodge-Newton reducibility.

3.1.1. Let (G, [b], {µ}) be an unramified local Shimura datum of Hodge type. Choose a
maximal torus T ⊆ G and a Borel subgroup B ⊆ G containing T , both defined over Zp.
Let P be a proper standard parabolic subgroup of G with Levi factor L and unipotent
radical U . We say that (G, [b], {µ}) is Hodge-Newton reducible (with respect to P and
L) if there exist µ ∈ {µ} which factors through L and an element b ∈ [b]∩L(K0) which
satisfy the following conditions:

(i) [b]L ∈ B(L, {µ}L),
(ii) in the action of µ and νG([b]) on Lie(U) ⊗Qp K0, only non-negative characters

occur.

Since G is unramified, one can give an alternative definition in terms of some specific
choice of b ∈ [b] ∩ L(K0) and µ ∈ {µ} (see [RV14], Remark 4.25.).

Example 3.1.2. Consider the case G = ResO|ZpGLn where O is the ring of integers of
some finite unramified extension of Qp. Then L is of the form

L = ResO|ZpGLj1 × ResO|ZpGLj2 × · · · × ResO|ZpGLjr .

Recall from Example 2.3.5 that we have an identification

N (G) = {(r1, r2, · · · , rn) ∈ Qd : r1 ≤ r2 ≤ · · · ≤ rn}.
Using this, we may write νG([b]) = (ν1, ν2, · · · , νn) and µ̄ = (µ1, µ2, · · · , µr). Then
(G, [b], {µ}) is Hodge-Newton reducible with respect to P and L if and only if the
following conditions are satisfied for each k = 1, 2, · · · , r:
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(i’) ν1 + ν2 + · · ·+ νjk = µ1 + µ2 + · · ·+ µjk ,
(ii’) νjk < νjk+1.

In other words, (G, [b], {µ}) is of Hodge-Newton reducible (with respect to P and L)
if and only if the Newton polygon νG([b]) and the σ-invariant Hodge polygon µ̄ have
contact points which are break points of νG([b]) specified by L. We refer the readers to
[MV10], §3 for more details.

3.1.3. For the rest of this section, we fix an unramified local Shimura datum of Hodge
type (G, [b], {µ}) which is Hodge-Newton reducible with respect to P and L. Let us
also fix a faithful G-representation Λ ∈ RepZp(G) in the condition (ii) of 2.3.1. Our

strategy is to study (G, [b], {µ}) by embedding G into another group G̃ of EL type such

that the datum (G̃, [b], {µ}) is also Hodge-Newton reducible.

Note that if G is not split, the datum (GL(Λ), [b], {µ}) may not be Hodge-Newton
reducible in general. In fact, the map on the Newton sets N (G) −→ N (GL(Λ)) induced
by the embedding G ↪−→ GL(Λ) does not map µ̄G to the Hodge polygon µGL(Λ) since
it does not respect the action of σ.

Lemma 3.1.4. There exists a group G̃ of EL type with the following properties:

(i) the embedding G ↪→ GL(Λ) factors through G̃.

(ii) the datum (G̃, [b], {µ}) is Hodge-Newton reducible with respect to a parabolic

subgroup P̃ ( G̃ and its Levi factor L̃ such that P = P̃ ∩G and L = L̃ ∩G.

Proof. Write V := Λ⊗Zp Qun where Qun is the maximal unramified extension of Qp in
a fixed algebraic closure. We know that G is split over Qun for being unramified over
Qp. Hence V admits a decomposition into character spaces

(3.1.4.1) V =
⊕

χ∈X∗(T )

Vχ

with the property that σ(Vχ) = Vσχ.

For each χ ∈ X∗(T ), let 〈χ〉 denote the Ω-conjugacy class of χ and write V〈χ〉 :=
⊕ω∈ΩVω·χ. Since V is a G-representation, we can rewrite the decomposition (3.1.4.1) as

V =
⊕

〈χ〉∈X∗(T )/Ω

V〈χ〉

where V〈χ〉’s are sub G-representations (see [Se68], Theorem 4.) with the property that
V〈σχ〉 = σ(V〈χ〉). If a Ω-conjugacy class 〈χ〉 ∈ X∗(T )/Ω is in an orbit of size m under
the action of σ, the G-representation

m−1⊕
i=0

V〈σiχ〉

is also a ResE|QpGLn-representation where E is the field of definition of 〈χ〉, which
is a degree m unramified extension of Qp (cf. (2.3.5.1) in Example 2.3.5). Hence the
embedding GQp ↪→ GL(ΛQp) factors through a group of the form

∏
ResEj |QpGLnj where
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each Ej is the field of definition of an orbit in X∗(T )/Ω. Then by [Se68], Theorem 5,
we can take the pull-back of this embedding over Zp to obtain

G ↪−→
∏

ResOj |ZpGLnj ↪−→ GL(Λ)

where Oj is the ring of integers of Ej.

We take
G̃ :=

∏
ResOj |ZpGLnj .

Choose a Borel pair (B̃, T̃ ) of G̃ such that B ⊆ B̃ and T ⊆ T̃ . Then we get a proper

standard parabolic subgroup P̃ ( G̃ with Levi factor L̃ such that P = P̃ ∩ G and

L = L̃ ∩G (e.g. by using [SGA3], Exp. XXVI, Cor. 6.10.).

It is evident from the construction that the embedding G ↪−→ G̃ respects the action of

σ on cocharacters. Hence the induced map on the Newton sets N (G) −→ N (G̃) maps
µ̄G to the σ-invariant Hodge polygon µ̄G̃. Combining this fact with the functoriality

of the Kottwitz map and the Newton map, we verify that the datum (G̃, [b], {µ}) is

Hodge-Newton reducible with respect to P̃ and L̃. �

We will refer to the datum (G̃, [b], {µ}) in Lemma 3.1.4 as an EL realization of the
Hodge-Newton reducible datum (G, [b], {µ}).

Remark. If G is split, the construction in the proof above yields G̃ = GL(Λ).

3.2. The Hodge-Newton decomposition and the Hodge-Newton filtration.

3.2.1. Fix an EL realization (G̃, [b], {µ}) of our datum (G, [b], {µ}), and take P̃ and L̃
as in Lemma 3.1.4. In a view of the functorial properties in Lemma 2.3.2, Lemma 2.3.8

and Lemma 2.4.6, we will always assume for simplicity that G̃ is of the form

G̃ := ResO|ZpGLn

where O is the ring of integers of some finite unramified extension E of Qp. Then L̃ is
of the form

(3.2.1.1) L̃ = ResO|ZpGLj1 × ResO|ZpGLj2 × · · · × ResO|ZpGLjr .

Let us now choose b ∈ [b] ∩ L(K0) and µ ∈ {µ} as in (i) of 3.1.1. After taking
σ-conjugate in L(K0) if necessary, we may assume that b ∈ L(W )µ(p)L(W ). Let
M = (M, (ti)) be the corresponding F -crystal over k with G-structure (in the sense of
2.3.3). If {µ} is minuscule, we let X = (X, (ti)) denote the corresponding p-divisible
group over k with G-structure.

Note that the tuple (L, [b]L, {µ}L) is an unramified local Shimura datum of Hodge
type; indeed, with our choice of b ∈ [b]L and µ ∈ {µ}L one immediately verifies the
conditions (i’) and (ii’) of 2.3.1.

Theorem 3.2.2. Notations as above. In addition, we set the following notations:

• L̃j denotes the j-th factor in (3.2.1.1),

• Lj is the image of L under the projection L̃� L̃j,
• bj is the image of b under the projection L� Lj,
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• µj is the cocharacter of Lj obtained by composing µ with the projection L� Lj.

Then M can be naturally regarded as an F -crystal with L1 × L2 × · · · × Lr-structure,
and admits a decomposition

(3.2.2.1) M = M1 ×M2 × · · · ×M r

where M j is an F -crystal with Lj-structure that arises from an unramified local Shimura
datum of Hodge type (Lj, [bj], {µj}).

When {µ} is minuscule, we also have a decomposition

(3.2.2.2) X = X1 ×X2 × · · · ×Xr

where Xj is a p-divisible group with Lj-structure corresponding to M j.

Proof. We need only prove the first part, as the second part follows immediately from
the first part via Dieudonné theory.

We first note that M has a natural L1×L2×· · ·×Lr-structure as follows: our choice
of b ∈ [b]L and µ ∈ {µ}L gives rise to an L-structure on M , which can be regarded as
an L1 × L2 × · · · × Lr-structure via the embedding L ↪→ L1 × L2 × · · · × Lr.

Now considering b as an element of [b]G̃, we get an F -crystal over k with G̃-structure

M̃ from an unramified local Shimura datum of Hodge type (G̃, [b], {µ}). As explained

in Example 2.3.5, we can regard the G̃-structure as an action of O which we refer to as

O-module structure. Since (G̃, [b], {µ}) is Hodge-Newton reducible, [MV10], Corollary
7 yields a decomposition

(3.2.2.3) M̃ = M̃1 × M̃2 × · · · × M̃r

where M̃j is an F -crystal over k with O-module structure which arises from an unram-

ified local Shimura datum of Hodge type (L̃j, [bj], {µj}). In fact, M̃j corresponds to the
choice bj ∈ [bj] (and µj ∈ {µj}).

A priori, it is not clear that the tuple (L̃j, [bj], {µj}) is an unramified local Shimura
datum of Hodge type. This is indeed implied in the statement and the proof of [MV10],
Corollary 7.

We check that the tuple (Lj, [bj], {µj}) is an unramified local Shimura datum of Hodge
type by verifying the conditions (i’) and (ii’) of 2.3.1. For (i’), we simply observe that
bj ∈ Lj(W )µ(p)Lj(W ), which follows from our assumption that b ∈ L(W )µ(p)L(W )

using the decomposition L̃ = L̃1 × L̃2 × · · · × L̃r. Then the condition (ii’) immediately
follows since we already know that Mj gives the desired W -lattice for bj and µj.

Since (Lj, [bj], {µj}) is an unramified local Shimura datum of Hodge type, we can
equip each Mj with an Lj-structure corresponding to the choice bj ∈ [bj] (and µj ∈
{µj}). We thus get the desired decomposition (3.2.2.1) from the decomposition (3.2.2.3).

�

Remark. We give an alternative proof of Theorem 3.2.2 using affine Deligne-Lusztig
sets. After proving that the tuples (Lj, [bj], {µj}) are unramified local Shimura data of
Hodge type, we find the following maps of affine Deligne-Lusztig sets:

XG
{µ}([b])

∼−→ XL
{µ}([b]) ↪→ XL1

{µ1}([b1])×XL2

{µ2}([b2])× · · · ×XLr
{µr}([br]).
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Here the first isomorphism is given by [MV10], Theorem 6, whereas the second map
is induced by the embedding L ↪→ L1 × L2 × · · · × Lr as in Lemma 2.3.8. Now the
desired decomposition follows from the composition of these two maps via the moduli
interpretation of affine Deligne-Lusztig sets given in Proposition 2.3.7.

3.2.3. We will refer to the decomposition (3.2.2.1) in Theorem 3.2.2 as the Hodge-
Newton decomposition of M (associated to P and L). For 1 ≤ a ≤ b ≤ r, we define

Ma,b :=
b∏

s=a

Ms.

Then we obtain a filtration

(3.2.3.1) 0 ⊂M1,1 ⊂M1,2 ⊂ · · · ⊂M1,r = M

such that each quotientM1,s/M1,s−1 'Ms carries an Ls-structure. We call this filtration
the Hodge-Newton filtration of M (associated to P and L).

When {µ} is minuscule, we will refer to the decomposition (3.2.2.2) in Theorem 3.2.2
as the Hodge-Newton decomposition of X (associated to P and L). For 1 ≤ a ≤ b ≤ r,
we define

Xa,b :=
b∏

s=a

Xs.

Then via (contravariant) Dieudonné theory, the filtration (3.2.3.1) yields a filtration

(3.2.3.2) 0 ⊂ Xr,r ⊂ Xr−1,r ⊂ · · · ⊂ X1,r = X,

where each quotient Xs,r/Xs+1,r ' Xs carries an Ls-structure. We call this filtration
the Hodge-Newton filtration of X (associated to P and L).

Theorem 3.2.4. Assume that p > 2 and {µ} is minuscule. Let R to be a ring of the
form R = W [[u1, · · · , uN ]] or R = W [[u1, · · · , uN ]]/(pm). Let X be a deformation of
X over R with an isomorphism α : X ⊗R k ∼= X. Then there exists a unique filtration
of X

0 ⊂Xr,r ⊂Xr−1,r ⊂ · · · ⊂X1,r = X

which lifts the Hodge-Newton filtration (3.2.3.2) in the sense that α induces isomor-
phisms Xs,r ⊗R k ∼= Xs,r and Xs,r/Xs+1,r ⊗R k ∼= Xs for s = 1, 2, · · · , r.

Note that we require each quotient Xs,r/Xs+1,r to carry tensors that lift those on
Xs.

Proof. We will only consider the case r = 2 as the argument easily extends to the
general case.

Take unramified local Shimura data of Hodge type (Lj, [bj], {µ}j) and (L̃j, [bj], {µj})
as in Theorem 3.2.2. In addition, let X̃ be the p-divisible group over k with O-module

structure that arises from the datum (G̃, [b], {µ}) with the choice b ∈ [b], and let X̃j

be the p-divisible group over k with O-module structure that arises from the datum

(L̃j, [bj], {µj}) with the choice bj ∈ [bj]. Then the filtration

0 ⊆ X̃2 ⊆ X̃
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is the Hodge-Newton filtration of X̃.

By the functorial properties of deformation spaces in Lemma 2.4.6, the closed em-

bedding G ↪−→ G̃ induces a closed embedding

DefX,G ↪−→ DefX,G̃.

Thus X yields a deformation X̃ of X̃ over R. Then by [Sh13], Theorem 5.4, X̃ admits
a (unique) filtration

0 ⊆X2 ⊆X

such that α induces isomorphisms α1 : X̃ /X2 ⊗R k ∼= X̃1 and α2 : X̃2 ⊗R k ∼= X̃2.

It remains to show that X /X2 and X2 are equipped with tensors which lift the
tensors of X1 and X2 respectively in the sense of Proposition 2.4.5. Note that we have
isomorphisms of Dieudonné modules

β : D(X ⊗R k) ∼= D(X), β1 : D((X /X2)⊗R k) ∼= D(X1), β2 : D(X2⊗R k) ∼= D(X2)

corresponding to the isomorphisms α, α1 and α2. We may regard β as an element of
G(W ) by identifying both modules with Λ∗ ⊗Zp W . Similarly, we may regard each βj
as an element of L̃j(W ). Then βj should be in the image of L̃(W ) ∩ G(W ) = L(W )

under the projection L̃ � L̃2 since it is induced by β. Hence we have βj ∈ Lj(W ) for
each j = 1, 2. This implies that X /X2 and X2 respectively lift the tensors of X1 and
X2 via α1 and α2, completing the proof. �

4. Serre-Tate theory for local Shimura data of Hodge type

Our goal for this section is to establish a generalization of Serre-Tate deformation
theory for p-divisible groups that arise from µ-ordinary local Shimura data of Hodge
type. There are two main ingredients for our theory, namely

(a) existence of a “slope filtration” which admits a unique lifting over deformation
rings;

(b) existence of a “canonical deformation”.

We prove (a) by applying Theorem 3.2.2 and Theorem 3.2.4 to µ-ordinary local Shimura
data of Hodge type. To prove (b), we first embed our deformation space into a defor-
mation space that arises from an EL realization of our local Shimura datum (cf. the
proof of Theorem 3.2.4), then use the existence of a canonical deformation in the latter
space proved by Moonen in [Mo04].

Throughout this section, we will assume that p > 2.

4.1. The slope filtration of µ-ordinary p-divisible groups.
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4.1.1. Let us first fix some notations for this section. We fix a µ-ordinary unramified
local Shimura datum of Hodge type (G, [b], {µ}). We assume that {µ} is minuscule,
and take a unique dominant representative µ ∈ {µ}. Then we have [b] = [µ(p)] by
definition of µ-ordinariness, so we may take b = µ(p) and write X for the p-divisible
group over k with G-structure that arises from this choice b ∈ [b] ∩ G(W )µ(p)G(W ).
Let m be a positive integer such that σm(µ) = µ, and take L to be the centralizer of
m · µ̄ in G which is a Levi subgroup (see [SGA3], Exp. XXVI, Cor. 6.10.). We set P
to be a proper standard parabolic subgroup of G with Levi factor L.

4.1.2. One can check that (G, [b], {µ}) is Hodge-Newton reducible with respect to P
and L (see [Wo13], Proposition 7.4.). Hence Theorem 3.2.2 gives us the Hodge-Newton
decomposition associated to P and L

(4.1.2.1) X = X1 ×X2 × · · · ×Xr

which we call the slope decomposition of X. If we set

Xa,b :=
b∏

s=a

Xs

for 1 ≤ a ≤ b ≤ r, we obtain the induced Hodge-Newton filtration

(4.1.2.2) 0 ⊂ Xr,r ⊂ Xr−1,r ⊂ · · · ⊂ X1,r = X,

which we refer to as the slope filtration of X.

Now Theorem 3.2.4 readily gives us the first main ingredient of the theory, namely
the unique lifting of the slope filtration.

Proposition 4.1.3. Let R be a W -algebra of the form R = W [[u1, · · · , uN ]] or R =
W [[u1, · · · , uN ]]/(pm). Let X be a deformation of X over R with an isomorphism
α : X ⊗R k ∼= X. Then there exists a unique filtration of X

0 ⊂Xr,r ⊂Xr−1,r ⊂ · · · ⊂X1,r = X

which lifts the slope filtration (4.1.2.2) in the sense that α induces isomorphisms Xs,r⊗R
k ∼= Xs,r and Xs,r/Xs+1,r ⊗R k ∼= Xs for s = 1, 2, · · · , r.

Proof. This is an immediate consequence of Theorem 3.2.4. �

4.2. The canonical deformation of µ-ordinary p-divisible groups.

4.2.1. We now aim to find the canonical deformation X can of X over W , which has
the property that all endomorphisms of X lifts to endomorphisms of X can. When G
is of EL type, we already know existence of such a deformation thanks to the work of
Moonen in [Mo04]. Our strategy is to deduce existence of X can from Moonen’s result
by means of an EL realization of the datum (G, [b], {µ}).

The following lemma is crucial for our strategy.

Lemma 4.2.2. Let (G̃, [b], {µ}) be an EL realization of the datum (G, [b], {µ}). Then

(G̃, [b], {µ}) is µ-ordinary.
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Proof. Consider the map on the Newton sets

N (G) −→ N (G̃)

induced by the embedding G ↪−→ G̃. It maps µ̄G to µ̄G̃ by the proof of Lemma 3.1.4,
and νG([b]) to νG̃([b]) by the functoriality of the Newton map. On the other hand, we
have νG([b]) = µ̄G since (G, [b], {µ}) is µ-ordinary. Hence we deduce that νG̃([b]) = µ̄G̃
which implies the assertion. �

4.2.3. Let us now fix an EL realization (G̃, [b], {µ}) of the datum (G, [b], {µ}). Then

(G̃, [b], {µ}) is Hodge-Newton reducible with respect to some parabolic subgroup P̃ of

G̃ with Levi factor L̃ such that P = P̃ ∩ G and L = L̃ ∩ G. In fact, since L is the

centralizer of m · µ̄ in G, we may take P̃ such that L̃ is the centralizer of m · µ̄ in G̃.

As in 3.2.1, we assume for simplicity that G̃ is of the form

G̃ := ResO|ZpGLn

where O is the ring of integers of some finite unramified extension of Qp. Then L̃ takes
the form

(4.2.3.1) L̃ = ResO|ZpGLj1 × ResO|ZpGLj2 × · · · × ResO|ZpGLjr .

We define L̃j, Lj, bj, µj as in Theorem 3.2.2. Then by the proof of Theorem 3.2.2 we
have the following facts:

(1) The tuples (Lj, [bj], {µj}) and (L̃j, [bj], {µj}) are unramified Shimura data of
Hodge type,

(2) Each factor Xj in the slope decomposition (4.1.2.1) arises from the datum
(Lj, [bj], {µj}) with the choice bj ∈ [bj].

Let X̃ be the p-divisible group over k with O-module structure that arises from the

datum (G̃, [b], {µ}) with the choice b ∈ [b]. It admits the Hodge-Newton decomposition

(4.2.3.2) X̃ = X̃1 × X̃2 × · · · × X̃r

which gives rise to the slope decomposition (4.1.2.1) of X. By Lemma 4.2.2, the Newton

polygon νG̃([b]) and the σ-invariant Hodge polygon µ̄G̃ of X̃ coincide. Since L̃ is the

centralizer of m · µ̄ in G̃, each factor in the decompositions (4.2.3.1) and (4.2.3.2)
corresponds to a unique slope in the polygon µ̄G̃ = νG̃([b]). Hence the decomposition

(4.2.3.2) is in fact the slope decomposition of X̃.

Proposition 4.2.4. Each factor Xj in the slope decomposition (4.1.2.1) is rigid, i.e.,
DefXj ,Lj is pro-represented by W .

Proof. Note that X̃j arises from the datum (L̃j, [bj], {µj}) with the choice bj ∈ [bj]
(see the proof of Theorem 3.2.2). It corresponds to a unique slope in the polygon
µ̄G̃ = νG̃([b]), so it is µ-ordinary with single slope. By [Mo04], Corollary 2.1.5, its
deformation space DefXj ,L̃j is pro-represented by W . Now the assertion follows from

the closed embedding of deformation spaces

DefXj ,Lj ↪−→ DefXj ,L̃j
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induced by the embedding Lj ↪−→ L̃j (Lemma 2.4.6). �

Let X can
j be the universal deformation of Xj in the sense of Proposition 2.4.5. Propo-

sition 4.2.4 says that X can
j is defined over W . Hence for any ring R of the form

R = W [[u1, · · · , uN ]] or R = W [[u1, · · · , uN ]]/(pm), there exists a unique deformation
of Xj over R, namely X can

j ⊗W R.

We define the canonical deformation of X to be a deformation of X over W given by

X can := X can
1 ×X can

2 × · · · ×X can
r .

It is clear from this construction that all endomorphisms of X lifts to endomorphisms of
X can⊗WR for any ringR of the formR = W [[u1, · · · , uN ]] orR = W [[u1, · · · , uN ]]/(pm).

4.3. Structure of deformation spaces.

4.3.1. When r = 1, we have DefX,G ' Spf(W ) by Proposition 4.2.4.

Let us now consider the case r = 2. Then we have the slope decompositions

X = X1 ×X2 and X̃ = X̃1 × X̃2.

Let (ds, fs) be the type of X̃s for s ∈ {1, 2} (see Example 2.3.5 for definition). Define a
function f′ : I → {0, 1} by

f′(i) =


0 if f1(i) = f2(i) = 0;

0 if f1(i) = d1 and f2(i) = d2;

1 if f1(i) = 0 and f2(i) = d2.

As noted in Example 2.3.5 for definition, there exists a unique isomorphism class of
µ-ordinary p-divisible group over k with O-module structure of type (1, f′). We let

X̃ can(1, f′) denote its canonical lifting.

Theorem 4.3.2. Notations above. The deformation space DefX,G has a natural struc-
ture of a p-divisible group over W . More precisely, we have an isomorphism

DefX,G
∼= X̃ can(1, f′)d

′

as p-divisible groups over W with O-structure for some integer d′ ≤ d1d2.

Proof. Consider the category CW of artinian local W -algebra with residue field k. Let

X̃ can
j denote the canonical deformation of X̃j for j = 1, 2. We define the functor

Ext(X̃ can
1 , X̃ can

2 ) : CW → Sets

by setting Ext(X̃ can
1 , X̃ can

2 )(R) to be the set of isomorphism classes of extensions of

X̃ can
j ⊗W R by X̃ can

2 ⊗W R as fppf sheaves of O-module.

By [Mo04], Theorem 2.3.3, we have the following isomorphisms:

(a) DefX,G̃
∼= Ext(X̃ can

1 , X̃ can
2 ) as smooth formal groups over W ,

(b) DefX,G̃
∼= X̃ can(1, f′)d1d2 as p-divisible groups over W with O-module structure.
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On the other hand, by Lemma 2.4.6 we have a closed embedding of deformation spaces

(4.3.2.1) DefX,G ↪−→ DefX,G̃.

Our first task is to show that DefX,G is a subgroup of DefX,G̃ with O-module struc-

ture. Let R be a smooth formal W -algebra of the form R = W [[u1, · · · , uN ]] or
R = W [[u1, · · · , uN ]]/(pm), and take two arbitrary deformations X and X ′ of X
over R. By Proposition 4.1.3, we have exact sequences

0 −→X can
1 ⊗W R −→X −→X can

2 ⊗W R −→ 0,

0 −→X can
1 ⊗W R −→X ′ −→X can

2 ⊗W R −→ 0.

We denote by X �X ′ the underlying p-divisible group of their Baer sum taken in

Ext(X̃ can
1 , X̃ can

2 )(R).

We wish to show that X �X ′ ∈ DefX,G(R). By the isomorphism (a), we already
know that X �X ′ ∈ DefX,G̃(R). Hence it remains to show that we have tensors on

(the Dieudonné module of) X �X ′ which lift the tensors (ti) on X in the sense of
Proposition 2.4.3. Unfortunately, it is not easy to explicitly find these tensors in terms
of the tensors on X and X ′. Instead, we start with the family of all tensors (sj) on
Λ which are fixed by G. Then we have a family (tj) := (sj ⊗ 1) on Λ∗ ⊗Zp W = M ,
where M denotes the Dieudonne module of X as before. Since the formal deformation
space DefX,G is independent of the choice of tensors (ti), we get tensors (̄tj) on X and
(̄t′j) on X ′ which lift (tj) (in the sense of Proposition 2.4.3). Moreover, the families (̄tj)
and (̄t′j) map to the same family of tensors on X can

2 under the surjections X � X can
2

and X ′ � X can
2 . Hence the families (̄tj) and (̄t′j) define the same family of tensors

on X �X ′ which lift (tj). In particular, there exists a family of tensors on X �X ′

which lift (ti).

Since DefX,G̃ has a finite p-torsion for being a p-divisible group, we observe from the

embedding (4.3.2.1) that DefX,G also has finite p-torsion. Using the same argument as
in the proof of [Mo04], Theorem 2.3.3, we deduce that DefX,G is a p-divisible group.

Hence DefX is a p-divisible subgroup of DefX,G̃
∼= X̃ can(1, f′)d1d2 with O-module

structure. Now the dimension of DefX,G determines an integer d′ such that

DefX,G ∼= X̃ can(1, f′)d
′

as p-divisible groups over W with O-module structure. �

Remark. From the proof, one sees that the canonical deformation X can corresponds
to the identity element in the p-divisible group structure of DefX,G.

4.3.3. We finally consider the case r ≥ 3. For convenience, we write DefX̃a,b for the

deformation space of X̃a,b. These spaces fit into a diagram
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DefX̃1,r
= DefX,G̃

DefX̃1,r−1
DefX̃2,r

DefX̃1,r−2
DefX̃2,r−1

DefX̃3,r

· · · · · · · · · · · ·

where each map comes from the restriction of the filtration in Proposition 4.1.3 (see
[Mo04], 2.3.6.). This diagram carries some additional structures called the cascade
structure, as described by Moonen in loc. cit.

We denote by DefXa,b
the pull back of DefX̃a,b over DefX,G. Then DefXa,b

classifies

deformations of Xa,b with a filtration that comes from the filtration of X in Proposition
4.1.3. If we pull back the above diagram over over DefX,G, we get another diagram

DefX1,r
= DefX,G

DefX1,r−1
DefX2,r

DefX1,r−2
DefX2,r−1

DefX3,r

· · · · · · · · · · · ·

where each map comes from the restriction of the filtration in Proposition 4.1.3. With
similar arguments as in the proof of Theorem 4.3.2, one can give a group structure on
DefXa,b

over DefXa,b−1
and DefXa+1,b

(cf. [Mo04], 2.3.6.). However, this diagram does
not carry the full cascade structure in general.
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[dJ95] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes
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